翻訳と辞書 |
Complete group : ウィキペディア英語版 | Complete group In mathematics, a group ''G'' is said to be complete if every automorphism of ''G'' is inner, and it is centerless; that is, it has a trivial outer automorphism group and trivial center. Equivalently, a group is complete if the conjugation map, ''G'' → Aut(''G'') (sending an element ''g'' to conjugation by ''g''), is an isomorphism: injectivity implies the group is centerless, as no inner automorphisms are the identity, while surjectivity implies it has no outer automorphisms. == Examples == As an example, all the symmetric groups S''n'' are complete except when ''n'' = 2 or 6. For the case ''n'' = 2 the group has a non-trivial center, while for the case ''n'' = 6 there is an outer automorphism. The automorphism group of a simple group ''G'' is an almost simple group; for a non-abelian simple group ''G'', the automorphism group of ''G'' is complete.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Complete group」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|